Human placental ectonucleoside triphosphate diphosphohydrolase gene transfer via gelatin-coated stents prevents in-stent thrombosis.
نویسندگان
چکیده
BACKGROUND In-stent thrombosis is mainly triggered by adenosine diphosphate (ADP)-dependent platelet aggregation after percutaneous coronary stent implantation. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) rapidly hydrolyzes ADP to adenosine monophosphate, inhibiting platelet aggregation. We tested the hypothesis that local delivery of human placental E-NTPDase (pE-NTPDase) gene into injured arteries via gene-eluting stent could prevent subacute in-stent thrombosis. METHODS AND RESULTS We generated gene-eluting stents by coating bare metal stents with cationic gelatin hydrogel containing pE-NTPDase cDNA (pE-NTPDase stent), and implanted the stents into rabbit femoral arteries (FA) prone to production of platelet-rich thrombi due to repeated balloon injury at 4-week intervals. After the second injury, E-NTPDase gene expression was severely decreased; however, the implantation of pE-NTPDase stent increased E-NTPDase mRNA levels and NTPDase activity to higher level than normal FA. The FAs with pE-NTPDase stents maintained patency in all rabbits (P<0.01), whereas the stent-implanted FAs without pE-NTPDase gene showed low patency rates (17% to 25%). The occlusive platelet-rich thrombi, excessive neointimal growth, and infiltration of macrophages were inhibited in stent implanted FA with pE-NTPDase gene, but not without pE-NTPDase gene. CONCLUSIONS Human pE-NTPDase gene transfer via cationic gelatin-coated stents inhibited subacute in-stent thrombosis and suppressed neointimal hyperplasia and inflammation without antiplatelet drugs.
منابع مشابه
Adenovirus-mediated transfer of human placental ectonucleoside triphosphate diphosphohydrolase to vascular smooth muscle cells suppresses platelet aggregation in vitro and arterial thrombus formation in vivo.
BACKGROUND Platelet-rich thrombus formation is a critical event in the onset of cardiovascular disease. Because ADP plays a significant role in platelet aggregation, its metabolism is important in the regulation of platelet activation and recruitment. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is a key enzyme involved in vascular ADP metabolism. We recently isolated 2 isoforms o...
متن کاملDelayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding?
The ecto-nucleoside triphosphate diphosphohydrolase CD39 represents a promising antithrombotic therapeutic. It degrades adenosine 5'-diphosphate (ADP), a main platelet activating/recruiting agent. We hypothesized that delayed enrichment of CD39 on developing thrombi will allow for a low and safe systemic concentration and thus avoid bleeding. We use a single-chain antibody (scFv, specific for a...
متن کاملLocal gene transfer of phVEGF-2 plasmid by gene-eluting stents: an alternative strategy for inhibition of restenosis.
BACKGROUND Drug-eluting stents represent a useful strategy for the prevention of restenosis using various antiproliferative drugs. These strategies share the liability of impairing endothelial recovery, thereby altering the natural biology of the vessel wall and increasing the associated risk of stent thrombosis. Accordingly, we tested the hypothesis that local delivery via gene-eluting stent o...
متن کاملSeeding of intravascular stents with genetically engineered endothelial cells.
The use of intravascular stents may be limited by both local thrombosis and restenosis due to intimal proliferation. In an effort to provide solutions to these problems, we seeded stents with genetically engineered endothelial cells in vitro. Using retroviral-mediated gene transfer, we inserted the gene for either bacterial beta-galactosidase or human tissue-type plasminogen activator (t-PA) in...
متن کاملThromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation.
Extracellular nucleotides play an important role in thrombosis and inflammation, triggering a range of effects such as platelet activation and recruitment, endothelial cell activation, and vasoconstriction. CD39, the major vascular nucleoside triphosphate diphosphohydrolase (NTPDase), converts ATP and ADP to AMP, which is further degraded to the antithrombotic and anti-inflammatory mediator ade...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2009